Hello UCDI!

Nice to meet you

Roy Berris

Software Engineer at iO

Working with
. Umbraco
. MACH
. NET

Can you work agile
When your technology isn't?

Technology should meet demanad

Clients want to act now.

Web@ We claim we're agile, but is your
technology agile enough?

umbraco

Building a Strong Foundation for Your
Modern .NET Project

== Breaking it down

1. Architecture
2. Design
3. Code

Defining a foundation

! \

What makes a foundation strong?

. Stability?
. Scalability?
. Ease of maintaince?

You define the foundation

T ‘r__uix\%ﬁ-vwo -

| d— P |
i .
L B |
r ar - By -] | |
- = — - 2 = =15 —] 1
[TR rrr B, Amar .
= a - - 5 ;
a b e, . y] = ‘

v

The foundation needs to suit your
solution.

. Functional requirements
- Non-functional requirements

0

Functional requirements

Can be defined in user stories

As a logged-in user | want to place
an item in my cart so | can order it
later

As an employee | want to update
orders so | avoid orders being sent to
the wrong address

0

Non-functional requirements

Define the operation rather than
specific behaviors.

Pr——
Joooo40d

o 4

- Number of requests per second
. Up-time % of a module
- Downtime after deployment

0

Metrics

A non-functional requirements is
within a system of measurement.

. Performance
. Security

. Availability

. Usability

. Scalability

. Reliability

. Maintainability

Future proof
Architecture

e

- Freedom of choice
. Flexibility

- Adoptability

Future proof
Architecture

Choose best of class

Choose best of class over best of
breed.

Best of breed is the very best
product in the eco-system.

Best of class is choosing the right fit
for your class, instead of buying
what is the very best overall.

e

Why not best of breed

(ol "g Identity?

Best of breed refers to ‘enterprise’
software. Typically closed
development and poor integrability.

Best of class are focusing on a
single category and on the core of

the needs.

Best of class focusses on
reusability.

Compose to the business needs

Start small and 'try before you buy'.

Evaluate based on your business
needs.

Don't be afraid to replace
components.

e

Flexibility

Flexibility stimulates innovation.

Replace components when the
business demands it.

Adoptability

Adopt new technologies.

Upgrading components creates
Innovation.

10

Future proof architecture is

. composing to your needs.
. keeping options open
. a strong foundation

A composable
solution

WEW‘ 1!
chtrdbirtonsitueatd |1
(oI KN¢ ‘Ihorsmenias!

Composable

D
o o
e

O)
4=
Q

-

O

O

D
e
L
P
i@

q

P,

O

O

O
O

application.

Separate modules in to their own.

Keeping dependencies loosely

coupled.

Composing our own

Composable doesnt have to be all
Saas.

We can create our own components.

Write middleware to communicate
between components.

0

The MACH way

s L

%

o2 -

Microservices API|-first Cloud-native

N

H

N

%

Headless

lt's an acronym for

- Microservices

. API-first
Cloud-native
Headless

e

Microservices

Component should have a single
responsibility.

Flexibility in development.

Innovate on microservices without
exposing the whole system.

0

API-first

—

—

An API specification is the contract
between modules.

Change the modules without
changing the contract.

A contract allows for adoptability of
new technology.

Cloud native

Building and designing for the cloud
Scale your application when needed.

Rapidly recover from system
failures.

0

Headless

head

Decoupling presentation from the
logic allows us to be

+ Omni-channel
.- Technology agnostic
. Optimized

10

Working MACH is

. flexible
. scalable
. resilient

Responsive to
changing markets

f
Lﬁllﬂll'
e

§Hikod -

1A ki ab S b Tnd TS

.'

II l'rl‘
L T

i,!ll""

31

1.;.l_ ‘--.i _,_L " Y .._.F. . & # B g0

Software
Design

Software architecture vs design

Architecture is the concern of the
whole.

Design is the concern of the
individual component.

0

Architecture

A high level abstract overview of the

” B g E system.
Kb Catalogus Database
N y - Y Contains the externally visible
properties of the components.
@ 4 h - A
Web %» Checkout Database
- . 4 \ /
4 A 4 o
K—) Cart Cache
A 4 & 4

0

Design

Catalogus

Product
Controller

I

Catalogus

Catalogus
Provider

A detailed specification of a
software component.

It's a design plan to implement the
component.

0

Design principles

Designing software requires
principles.

| et's look at SOLID.

Single Responsibility Principle

Webshop

Catalog

l

Checkout

Cart

A module should have only one
reason to change.

It should do things in the scope of a
single subject.

Dependency Inversion Principle

Address
Controller

[

Mapbox

/ Geocoding

Gmaps

High-level modules should not
depend on low-level modules.

It will decouple the low-level
implementation from the high-level
components.

Interface Segregation Principle

Destination
Controller

I

/ Directions

/

Geocoding

~

Address
Controller

Gmaps

Mapbox

Clients should not be forced to
depend on interfaces they do not
use.

If the SRP and DIP had a child.

Keeping options open

Separating the system into modules
with a single responsibility.

|solating modules through
interfaces.

We open the pathways for the
future.

)

CLEAN architecture

Clean architecture is a design
philosophy.

Splitting the system in to different
layers.

uoljejuogsolid

Each layer having it's own
responsibilities.

Application

The presentation

The presentation layer is on the
outer ring.

It defines the specifications with the
outside world.

uoljejuasald
Infrasstructure

Supports an API-first approach.

The application

uoljejuoso.lid

Application

Infrasstructure

The application layer is the middle
ring.

It couples use case with the domain.

Allowing flexibility within the
component.

The domain

The domain layer is the inner ring.

It couples use case with the domain.

uoljejuasald
Infrasstructure

Allowing flexibility within the
Domain component.

Application

0

The infrastructure

uoljeljuoasalid

The infrastructure layer is on the
outer ring.

It couples external systems with the
use cases of the system.

Key principles

Decoupling

. Independence of frameworks

. Independence from API
specifications

. Independence of any external
service

0

Key benefits

Key benefits of separating our
concerns

. Maintainability
. Testability
. Flexibility

0

Proof it!

Outer ring and inner ring have
different responsibilities.

Outer ring can change without
affecting the inner ring.

The inner ring can change without
affecting the outer ring.

0

Proof it!

Outer ring is the contract with the
solution.

When keeping the contract the same
we can change the inner ring.

Adopting new technologies.

: S~ o =3 _‘r_"_h_—_""’-‘[f__r‘_ - __-—"{F:_._-- - ..-"". Ty 'u:qrf‘t‘: 5-"'1 t" J
e | SIROWARNutortor bilen | g - UZOXST o

- - s F P
ey = = AL NUOOMOEH)
e T P 4 L = - . | > .

CLEAN architecture is

= P
¥ .r,. \
ST gy g0 22

=\

» Freedom
. Flexible
. Adoptable

i 'n.l
& e . \! .

#

i

- = -
— i
1._. -
Y
|
.

—2.Crmack Gagroaacerantitin CAC==—"__ g

Future proof
architecture

0

Code 1s a tool

The foundation is more than code.

Code is the tool to realize it.

e B When coding we should make it.

gbort("The Rails enviremmss o g 4

regquire 'spec helper”
require 'rspec/rails’

- Readable

. Maintainable
. Scalable

. Efficient

. Testable

0

Codestyle

function (g) { var q = { vertical: !1, rtl: !1, st:
nitCallback: null, setupCallback: null, relocadCallt
temLastOutCallback: null, itemVisibleInCallback: nu
liv>", buttonNextEvent: "click”, buttonPrevEvent: "«
"load.jcarousel™, function () { m = !0 }); g.jcarol

his.
.options.rtl = (g(a).attr("dir") || g("html").at
.options.vertical ? this.options.rtl ? "right"” :
") !'= -1) { g(a).removeClass(d[f]); b = d[T]; br
his.
.clip = this.container.find(".jcarousel-clip"));
.container = this.clip.wrap("<div></div>").parer

‘his
‘his
kin

‘his
‘his

buttonPrevState = this.buttonNextState = this.t

list.parents("”.jcarousel-clip”), this.container

lass=" " + b + ""></div>"); this.buttonPrev = g(".-

‘his.

buttonPrev = g(this.options.buttonPrevHTML).apg

iext”, this.container); if (this.buttonNext.size() -
this.buttonNext.addClass(this.className("jcarousel-

g W N S e, PINTINPRN T MEPLETEREr o e T] 3 120 _ 22N MOl i S e N =y USRI 1

Software design requires a solid
code style.

Having a consistent codestyle is
key.

The team should code as one.

0

Gate keeping

Applying the codestyle is key.

Use code analyzers to warn you
about codestyle offenses.

Use analyzers such as StyleCop.

0

vE NV T NV 7

" Code

> PP PP

SA1508
MAOO53
SAT005
MAOO53
SA1413
SA1122
SA1122

SA1505
SAT0?8

Warnings == Errors

Description

A closing brace should not be pre
Make class sealed

Single line comment should begir
Make class sealed

Use trailing comma in multi-line ir
Use string.Empty for empty string
Use string.Empty for empty string
An opening brace should not be f

Code <hotilld not contain trailina v

A warning is something that is not
breaking to the function of the
application.

It is breaking to the maintainability
of the code.

0

Static Code Analysis

MEASURES

New Code Overall Code
Since 20231114.2
T a—— i A= - -

1 8 e Bugs Reliability

O 0.0% - 18.2% 666

Coverage on 18K Lines to cover Unit Tests Duplications on 49K Lines Duplicated Blocks

Use Static Code Analysis for further
iInsights.

Avoid technical dept.

Use tools such as SonarQube.

That's all

Contact me

Roy Berris

@royberris n

www.berris.dev

